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Causality… affects

-
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Enter causal inference

- We’ve set the stage: we want to find some ad layout L which maximises click 
yield Y* without running A/B testing

- Reminder: A/B testing means that half of all users see layout A, other half layout B
- We want to use counterfactual reasoning to understand how changes to the 

layout would impact click yield 
- Using data we’ve already gathered!

- Will keep technical notes to a minimum, but the full derivations are not hard to 
follow along if you’re interested!
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Counterfactual reasoning

- “Counterfactual” is shorthand for “what would have happened if…?”
- Example 1: training a neural network with backprop can be seen through a 

counterfactual lens
- We “play” the data
- We intervene on the parameters
- We “replay” the data
- Rinse and repeat
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Counterfactual reasoning

- “Counterfactual” is shorthand for “what would have happened if…?”
- Example 2: reweighting randomised trials

- Say you split patients equally to two treatments, A and B
- Overall effectiveness of the experiment is
- What if instead we want to find the effectiveness of some experiment where we apply 

treatment A with probability p, otherwise treatment B?
- Answer: reweight the original trials:
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Back to our ad model…

- We start from a structural equation model as above
- This generates a Markov factorisation – ω is just shorthand for the joint 

distribution of all variables

- We model an intervention as changing one factor in the Markov factorisation, 
in this case changing the scoring function
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- Given this alternative factorisation, we want to estimate some desired quantity
- In our case, a good choice is click yield – the number of ad clicks per page

- What’s going on here?
- P*(ω) is being substituted with P(ω) multiplied by some ratio
- We sample from P(ω) because we know it (the instantiation to actual values of q_i, x_i etc.)
- y is the number of clicks

- If this looks familiar, it’s because it’s importance sampling
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Importance sampling

- More generally, we can estimate the counterfactual expectation of any 
quantity l(ω):

- With weights:

- Great, we’re done!
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Not so fast

- Our sampling weights depend on factors which are stochastic in nature, there 
is noise in their output

- We want the numerator, P*, to be non-zero whenever P is non-zero
- Which means that the counterfactual factors need to be stochastic 

themselves, i.e. our experiment needs to be randomised
- This means I can’t just cherry-pick some values, run it once, get some result and call it a day
- I must randomise it and run it multiple times to get something decent out

- Because of this randomness, a single estimate of our quantity of interest is no 
longer enough; we need to know how confident we are in that estimate
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Confidence intervals

- There’s a clever way of getting confidence intervals for any distribution given 
it has a finite variance: you use the central limit theorem

- Reminder: CLT says that given a sequence of i.i.d random variables               
the random variable                    converges in distribution to a normal N(0, σ2) 
as the length of the sequence goes to infinity1

- Problem: in importance sampling, the two distributions need to overlap fairly 
well for us to get an unbiased estimator

121 Click here for a refresher

https://stats.stackexchange.com/questions/371067/trouble-relating-the-central-limit-theorem-to-confidence-intervals


What’s the issue?

- The counterfactual 
distribution and the actual 
distribution of our model 
don’t always overlap

- When the counterfactual 
distribution assigns 
probability mass in regions 
where the original 
distribution has none, our 
weights are very large
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What might this look like in practice?

- Imagine that your counterfactual is a 
change that works so well it gives 
you a click yield in the millions, 
when your previous highest value 
for the same amount of traffic was 
1,000.

- It’s really really unlikely that your 
original distribution assigns any real 
probability to this scenario

- But your counterfactual says that’s 
possible; in fact, that’s the whole 
point!
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Solution

- Clip the weights such that in those domains that are poorly explored by the 
original distribution, the resulting weight is 0.

- With R being an empirically chosen reweighting ratio
- This is a limitation: R should in theory be chosen before seeing the data, but the authors select 

this such that they get consistent results in practice
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Solution

- Now, decompose the click yield we want to estimate, Y*, into two terms:

- Where Ω_R is the set of weights ω that satisfy the constraint on the previous 
slide

- We call Y* bar the clipped expectation, and it’s much easier to estimate 
because clipped weights are bounded by R
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Confidence intervals

- We now have a quantity with finite variance, to which we can apply the central 
limit theorem to get confidence intervals

- The paper uses two types of confidence intervals, which differ slightly in how 
the quantity Y* is bounded

- There’s an inner confidence interval that captures the uncertainty from not 
exploring the domain G_R that is high in probability in P* but not in P

- If this is wide, we may have to adjust how we collect data so we get better coverage
- There’s an outer confidence interval that captures uncertainty from a limited 

sample size
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An experiment: mainline reserve

- Mainline reserve := a threshold that the rank-score of an ad needs to clear for 
it to be included in the mainline – the main search section – rather than in the 
sidebar

- Scale this up: fewer ads clear the threshold, fewer ads in the main search section
- Scale down: more ads clear the threshold and end up in the mainline section
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An experiment: mainline reserve

- Experiment: scale the mainline reserve according to some multiplier 
- Where ρ, σ are hyperparameters

- Collect data using ρ = 1, σ = 0.3. (i.e. generate ads, let users search, record 
click yield)

- Use this to estimate what the click yield would have been given a different ρ*, 
σ*
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An experiment: mainline reserve
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Other things we could do

- This experiment kept σ* = σ, but we could change it to see what would 
happen if the reserve fluctuated more widely

- It would also be interesting to ask the question “What would click yield be if we had shown 
some people more mainline ads, other people fewer”

- We could try to estimate an exact value of the mainline reserve without 
randomising

- We could add more dimensions along which to experiment – not just 
changing the score function 

- The difficulty here is that we’d have to effectively collect more data exploring multiple 
dimensions
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Next…

- The next section in the paper shows ways to use the causal graph that our 
structural equation model induces to improve this counterfactual analysis

- Better reweighting variables
- Better confidence intervals using invariant predictors

- “Learning” section explores how to fit a model to the counterfactual 
distribution to predict a variable of interest
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Conclusion

- Using causal inference techniques enables you to reason counterfactually – 
about things that haven’t happened

- We can apply this in an advertising context to find good ad layouts that 
maximise click yield

- In theory we could approximate a counterfactual estimate of the click yield 
simply by sampling from our existing distribution and reweighting the samples

- In practice, importance sampling has a key limitation: the two distributions 
must overlap somewhat, otherwise our variance blows up

- Clipping the weights fixes this, and enables you to get an estimate + 
confidence intervals on the estimate
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Extra slides

24



25


